
A First Exercise in
Natural Language

Processing with
Python: Counting

Hapaxes

A first exercise
Counting hapaxes (words which occur only once in a text or
corpus) is an easy enough problem that makes use of both
simple data structures and some fundamental tasks of natural
language processing (NLP): tokenization (dividing a text into
words), stemming, and part-of-speech tagging for
lemmatization. For that reason it makes a good exercise to get
started with NLP in a new language or library.

As a first exercise in implementing NLP tasks with Python, then,
we’ll write a script which outputs the count and a list of the
hapaxes in the following paragraph (our script can also be run
on an arbitrary input file). You can follow along, or try it
yourself and then compare your solution to mine.

Cory Linguist, a cautious corpus linguist, in creating
a corpus of courtship correspondence, corrupted a
crucial link. Now, if Cory Linguist, a careful corpus

1

https://en.wikipedia.org/wiki/Hapax_legomenon

linguist, in creating a corpus of courtship
correspondence, corrupted a crucial link, see that
YOU, in creating a corpus of courtship correspondence,
corrupt not a crucial link.

To keep things simple, ignore punctuation and case. To make
things complex, count hapaxes in all three of word form,
stemmed form, and lemma form. The final program (
hapaxes.py) is listed at the end of this post. The sections below
walk through it in detail for the beginning NLP/Python
programmer.

Natural language processing
with Python
There are several NLP packages available to the Python
programmer. The most well-known is the Natural Language
Toolkit (NLTK), which is the subject of the popular book Natural
Language Processing with Python by Bird et al. NLTK has a focus
on education/research with a rather sprawling API. Pattern is a
Python package for datamining the WWW which includes
submodules for language processing and machine learning.
Polyglot is a language library focusing on “massive multilingual
applications.” Many of its features support over 100 languages
(but it doesn’t seem to have a stemmer or lemmatizer builtin).
And there is Matthew Honnibal’s spaCy, an “industrial strength”
NLP library focused on performance and integration with
machine learning models.

If you don’t already know which library you want to use, I

2

hapaxes.py
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/book/
http://www.nltk.org/book/
https://github.com/clips/pattern
http://polyglot.readthedocs.io/en/latest/
https://spacy.io/

recommend starting with NLTK because there are so many
online resources available for it. The program presented below
actually presents five solutions to counting hapaxes, which will
hopefully give you a feel for a few of the libraries mentioned
above:

• Word forms - counts unique spellings (normalized for case).
This uses plain Python (no NLP packages required)

• NLTK stems - counts unique stems using a stemmer provided
by NLTK

• NLTK lemmas - counts unique lemma forms using NLTK’s
part of speech tagger and interface to the WordNet
lemmatizer

• spaCy lemmas - counts unique lemma forms using the spaCy
NLP package

Installation
This tutorial assumes you already have Python installed on your
system and have some experience using the interpreter. I
recommend referring to each package’s project page for
installation instructions, but here is one way using pip. As
explained below, each of the NLP packages are optional; feel
free to install only the ones you’re interested in playing with.

Install NLTK:
$ pip install nltk

Download reqed NLTK data packages
$ python -c 'import nltk; nltk.download("wordnet");
nltk.download("averaged_perceptron_tagger");

3

https://pypi.python.org/pypi/pip

nltk.download("omw-1.4")'

install spaCy:
$ pip install spacy

install spaCy en model:
$ python -m spacy download en_core_web_sm

Optional dependency on Python
modules
It would be nice if our script didn’t depend on any particular
NLP package so that it could still run even if one or more of
them were not installed (using only the functionality provided
by whichever packages are installed).

One way to implement a script with optional package
dependencies in Python is to try to import a module, and if we
get an ImportError exception we mark the package as
uninstalled (by setting a variable with the module’s name to
None) which we can check for later in our code:

[hapaxes.py: 63-98]

Imports
#
Import some Python 3 features to use in Python 2
from __future__ import print_function
from __future__ import unicode_literals

gives us access to command-line arguments
import sys

4

https://docs.python.org/3/tutorial/errors.html#exceptions

The Counter collection is a convenient layer on top
of
python's standard dictionary type for counting
iterables.
from collections import Counter

The standard python regular expression module:
import re

try:
 # Import NLTK if it is installed
 import nltk

 # This imports NLTK's implementation of the
Snowball
 # stemmer algorithm
 from nltk.stem.snowball import SnowballStemmer

 # NLTK's interface to the WordNet lemmatizer
 from nltk.stem.wordnet import WordNetLemmatizer
except ImportError:
 nltk = None
 print("NLTK is not installed, so we won't use it.
")

try:
 # Import spaCy if it is installed
 import spacy
except ImportError:
 spacy = None
 print("spaCy is not installed, so we won't use
it.")

5

Tokenization
Tokenization is the process of splitting a string into lexical
‘tokens’ — usually words or sentences. In languages with space-
separated words, satisfactory tokenization can often be
accomplished with a few simple rules, though ambiguous
punctuation can cause errors (such as mistaking a period after
an abbreviation as the end of a sentence). Some tokenizers use
statistical inference (trained on a corpus with known token
boundaries) to recognize tokens.

In our case we need to break the text into a list of words in
order to find the hapaxes. But since we are not interested in
punctuation or capitalization, we can make tokenization very
simple by first normalizing the text to lower case and stripping
out every punctuation symbol:

[hapaxes.py: 100-119]

def normalize_tokenize(string):
 """
 Takes a string, normalizes it (makes it lowercase
and
 removes punctuation), and then splits it into a
list of
 words.

 Note that everything in this function is plain
Python
 without using NLTK (although as noted below, NLTK
provides
 some more sophisticated tokenizers we could have
used).

6

https://en.wikipedia.org/wiki/Tokenization_(lexical_analysis)

 """
 # make lowercase
 norm = string.lower()

 # remove punctuation
 norm = re.sub(r'(?u)[^\w\s]', '', norm) ①

 # split into words
 tokens = norm.split()

 return tokens

① Remove punctuation by replacing everything that is not a
word (\w) or whitespace (\s) with an empty string. The (?u)
flag at the beginning of the regex enables unicode matching
for the \w and \s character classes in Python 2 (unicode is the
default with Python 3).

Our tokenizer produces output like this:

>>> normalize_tokenize("This is a test sentence of
white-space separated words.")
['this', 'is', 'a', 'test', 'sentence', 'of',
'whitespace', 'separated', 'words']

Instead of simply removing punctuation and then splitting
words on whitespace, we could have used one of the tokenizers
provided by NLTK. Specifically the word_tokenize() method,
which first splits the text into sentences using a pre-trained
English sentences tokenizer (sent_tokenize), and then finds
words using regular expressions in the style of the Penn
Treebank tokens.

7

http://www.nltk.org/api/nltk.tokenize.html
http://www.nltk.org/api/nltk.tokenize.html

We could have done it this way (requires the
'punkt' data package):
from nltk.tokenize import word_tokenize
tokens = word_tokenize(norm)

The main advantage of word_tokenize() is that it will turn
contractions into separate tokens. But using Python’s standard
split() is good enough for our purposes.

Counting word forms
We can use the tokenizer defined above to get a list of words
from any string, so now we need a way to count how many
times each word occurs. Those that occur only once are our
word-form hapaxes.

[hapaxes.py: 121-135]

def word_form_hapaxes(tokens):
 """
 Takes a list of tokens and returns a list of the
 wordform hapaxes (those wordforms that only appear
once)

 For wordforms this is simple enough to do in plain
 Python without an NLP package, especially using
the Counter
 type from the collections module (part of the
Python
 standard library).
 """

8

 counts = Counter(tokens) ①
 hapaxes = [word for word in counts if counts[word]
== 1] ②

 return hapaxes

① Use the convenient Counter class from Python’s standard
library to count the occurrences of each token. Counter is a
subclass of the standard dict type; its constructor takes a list
of items from which it builds a dictionary whose keys are
elements from the list and whose values are the number of
times each element appeared in the list.

② This list comprehension creates a list from the Counter
dictionary containing only the dictionary keys that have a
count of 1. These are our hapaxes.

Stemming and Lemmatization
If we use our two functions to first tokenize and then find the
hapaxes in our example text, we get this output:

>>> text = "Cory Linguist, a cautious corpus linguist,
in creating a corpus of courtship correspondence,
corrupted a crucial link. Now, if Cory Linguist, a
careful corpus linguist, in creating a corpus of
courtship correspondence, corrupted a crucial link,
see that YOU, in creating a corpus of courtship
correspondence, corrupt not a crucial link."
>>> tokens = normalize_tokenize(text)
>>> word_form_hapaxes(tokens)
['now', 'not', 'that', 'see', 'if', 'corrupt', 'you',

9

https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

'careful', 'cautious']

Notice that ‘corrupt’ is counted as a hapax even though the text
also includes two instances of the word ‘corrupted’. That is
expected because ‘corrupt’ and ‘corrupted’ are different word-
forms, but if we want to count word roots regardless of their
inflections we must process our tokens further. There are two
main methods we can try:

• Stemming uses an algorithm (and/or a lookup table) to
remove the suffix of tokens so that words with the same base
but different inflections are reduced to the same form. For
example: ‘argued’ and ‘arguing’ are both stemmed to ‘argu’.

• Lemmatization reduces tokens to their lemmas, their
canonical dictionary form. For example, ‘argued’ and
‘arguing’ are both lemmatized to ‘argue’.

Stemming with NLTK

In 1980 Martin Porter published a stemming algorithm which
has become a standard way to stem English words. His
algorithm was implemented so many times, and with so many
errors, that he later created a programming language called
Snowball to help clearly and exactly define stemmers. NLTK
includes a Python port of the Snowball implementation of an
improved version of Porter’s original stemmer:

[hapaxes.py: 137-153]

def nltk_stem_hapaxes(tokens):
 """
 Takes a list of tokens and returns a list of the

10

https://en.wikipedia.org/wiki/Stemming
https://en.wikipedia.org/wiki/Lemmatisation
https://tartarus.org/martin/PorterStemmer/index.html
https://snowballstem.org/
https://snowballstem.org/

word
 stem hapaxes.
 """
 if not nltk: ①
 # Only run if NLTK is loaded
 return None

 # Apply NLTK's Snowball stemmer algorithm to
tokens:
 stemmer = SnowballStemmer("english")
 stems = [stemmer.stem(token) for token in tokens]

 # Filter down to hapaxes:
 counts = nltk.FreqDist(stems) ②
 hapaxes = counts.hapaxes() ③
 return hapaxes

① Here we check if the nltk module was loaded; if it was not
(presumably because it is not installed), we return without
trying to run the stemmer.

② NLTK’s FreqDist class subclasses the Counter container type
we used above to count word-forms. It adds some methods
useful for calculating frequency distributions.

③ The FreqDist class also adds a hapaxes() method, which is
implemented exactly like the list comprehension we used to
count word-form hapaxes.

Running nltk_stem_hapaxes() on our tokenized example text
produces this list of stem hapaxes:

>>> nltk_stem_hapaxes(tokens)
['now', 'cautious', 'that', 'not', 'see', 'you', '

11

http://www.nltk.org/_modules/nltk/probability.html

care', 'if']

Notice that ‘corrupt’ is no longer counted as a hapax (since it
shares a stem with ‘corrupted’), and ‘careful’ has been stemmed
to ‘care’.

Lemmatization with NLTK
NLTK provides a lemmatizer (the WordNetLemmatizer class in
nltk.stem.wordnet) which tries to find a word’s lemma form
with help from the WordNet corpus (which can be downloaded
by running nltk.download() from an interactive python
prompt — refer to “Installing NLTK Data” for general
instructions).

In order to resolve ambiguous cases, lemmatization usually
requires tokens to be accompanied by part-of-speech tags. For
example, the word lemma for rose depends on whether it is
used as a noun or a verb:

>>> lemmer = WordNetLemmatizer()
>>> lemmer.lemmatize('rose', 'n') # tag as noun
'rose'
>>> lemmer.lemmatize('rose', 'v') # tag as verb
'rise'

Since we are operating on untagged tokens, we’ll first run them
through an automated part-of-speech tagger provided by NLTK
(it uses a pre-trained perceptron tagger originally by Matthew
Honnibal: “A Good Part-of-Speech Tagger in about 200 Lines of
Python”). The tagger requires the training data available in the

12

http://www.nltk.org/_modules/nltk/stem/wordnet.html
https://wordnet.princeton.edu/
http://www.nltk.org/data.html
https://explosion.ai/blog/part-of-speech-pos-tagger-in-python
https://explosion.ai/blog/part-of-speech-pos-tagger-in-python

'averaged_perceptron_tagger.pickle' file which can be
downloaded by running nltk.download() from an interactive
python prompt.

[hapaxes.py: 155-176]

def nltk_lemma_hapaxes(tokens):
 """
 Takes a list of tokens and returns a list of the
lemma
 hapaxes.
 """
 if not nltk:
 # Only run if NLTK is loaded
 return None

 # Tag tokens with part-of-speech:
 tagged = nltk.pos_tag(tokens) ①

 # Convert our Treebank-style tags to WordNet-style
tags.
 tagged = [(word, pt_to_wn(tag))
 for (word, tag) in tagged] ②

 # Lemmatize:
 lemmer = WordNetLemmatizer()
 lemmas = [lemmer.lemmatize(token, pos)
 for (token, pos) in tagged] ③

 return nltk_stem_hapaxes(lemmas) ④

① This turns our list of tokens into a list of 2-tuples: [(token1,
tag1), (token2, tag2)…]

13

② We must convert between the tags returned by pos_tag() and
the tags expected by the WordNet lemmatizer. This is done
by applying the pt_to_wn() function (defined below) to each
tag.

③ Pass each token and POS tag to the WordNet lemmatizer.

④ If a lemma is not found for a token, then it is returned from
lemmatize() unchanged. To ensure these unhandled words
don’t contribute spurious hapaxes, we pass our lemmatized
tokens through the word stemmer for good measure (which
also filters the list down to only hapaxes).

As noted above, the tags returned by pos_tag() are Penn
Treebank style tags while the WordNet lemmatizer uses its own
tag set (defined in the nltk.corpus.reader.wordnet module,
though that is not very clear from the NLTK documentation).
The pt_to_wn() function converts Treebank tags to the tags
required for lemmatization:

[hapaxes.py: 178-209]

def pt_to_wn(pos):
 """
 Takes a Penn Treebank tag and converts it to an
 appropriate WordNet equivalent for lemmatization.

 A list of Penn Treebank tags is available at:

https://www.ling.upenn.edu/courses/Fall_2003/ling001/p
enn_treebank_pos.html
 """

 from nltk.corpus.reader.wordnet import NOUN, VERB,
ADJ, ADV

14

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

 pos = pos.lower()

 if pos.startswith('jj'):
 tag = ADJ
 elif pos == 'md':
 # Modal auxiliary verbs
 tag = VERB
 elif pos.startswith('rb'):
 tag = ADV
 elif pos.startswith('vb'):
 tag = VERB
 elif pos == 'wrb':
 # Wh-adverb (how, however, whence,
whenever...)
 tag = ADV
 else:
 # default to NOUN
 # This is not strictly correct, but it is good
 # enough for lemmatization.
 tag = NOUN

 return tag

Finding hapaxes with spaCy
Unlike the NLTK API, spaCy is designed to tokenize, parse, and
tag a text all by calling the single function returned by
spacy.load(). The spaCy parser returns a ‘document’ object
which contains all the tokens, their lemmas, etc. According to
the spaCy documentation, “Lemmatization is performed using
the WordNet data, but extended to also cover closed-class words

15

such as pronouns.” The function below shows how to find the
lemma hapaxes in a spaCy document.



spaCy’s models load quite a bit of data from
disk which can cause script startup to be slow
making it more suitable for long-running
programs than for one-off scripts like ours.

[hapaxes.py: 211-234]

def spacy_hapaxes(rawtext):
 """
 Takes plain text and returns a list of lemma
hapaxes using
 the spaCy NLP package.
 """
 if not spacy:
 # Only run if spaCy is installed
 return None

 # Load the English spaCy parser
 spacy_parse = spacy.load('en_core_web_sm')

 # Tokenize, parse, and tag text:
 doc = spacy_parse(rawtext)

 lemmas = [token.lemma_ for token in doc
 if not token.is_punct and not token
.is_space] ①

 # Now we can get a count of every lemma:
 counts = Counter(lemmas) ②

 # We are interested in lemmas which appear only

16

once
 hapaxes = [lemma for lemma in counts if counts
[lemma] == 1]
 return hapaxes

① This list comprehension collects the lemma form
(token.lemma_ of all tokens in the spaCy document which are
not punctuation (token.is_punct) or white space
(token.is_space).

② An alternative way to do this would be to first get a count of
lemmas using the count_by() method of a spaCy document,
and then filtering out punctuation if desired: counts =
doc.count_by(spacy.attrs.LEMMA) (but then you’d have to map
the resulting attributes (integers) back to words by looping
over the tokens and checking their orth attribute).

Make it a script
You can play with the functions we’ve defined above by typing
(copy-and-pasting) them into an interactive Python session. If
we save them all to a file, then that file is a Python module
which we could import and use in a Python script. To use a single
file as both a module and a script, our file can include a
construct like this:

if __name__ == "__main__":
 # our script logic here

This works because when the Python interpreter executes a
script (as opposed to importing a module), it sets the top-level
variable __name__ equal to the string "__main__" (see also: What

17

https://spacy.io/docs/api/doc#count_by
https://stackoverflow.com/questions/419163/what-does-if-name-main-do

does if __name__ == “__main__”: do?).

In our case, our script logic consists of reading any input files if
given, running all of our hapax functions, then collecting and
displaying the output. To see how it is done, scroll down to the
full program listing below.

Running it

To run the script, first download and save hapaxes.py. Then:

$ python hapaxes.py

Depending on which NLP packages you have installed, you
should see output like:

 Count
 Wordforms 9
 NLTK-stems 8
 NLTK-lemmas 8
 spaCy 8

-- Hapaxes --
Wordforms: careful, cautious, corrupt, if, not,
now, see, that, you
NLTK-stems: care, cautious, if, not, now, see, that,
you
NLTK-lemmas: care, cautious, if, not, now, see, that,
you
spaCy: careful, cautious, if, not, now, see,
that, you

18

https://stackoverflow.com/questions/419163/what-does-if-name-main-do
hapaxes.py

Try also running the script on an arbitrary input file:

$ python hapaxes.py somefilename

run it on itself and note that
source code doesn't give great results:
$ python hapaxes.py hapaxes.py

hapaxes.py listing
The entire script is listed below and available at hapaxes.py.

hapaxes.py

"""
A sample script/module which demonstrates how to count
hapaxes (tokens which
appear only once) in an untagged text corpus using
plain python, NLTK, and
spaCy. It counts and lists hapaxes in five different
ways:

 * Wordforms - counts unique spellings (normalized
for case). This uses
 plain Python (no NLTK required)

 * NLTK stems - counts unique stems using a stemmer
provided by NLTK

 * NLTK lemmas - counts unique lemma forms using
NLTK's part of speech
 * tagger and interface to the WordNet lemmatizer.

19

hapaxes.py

 * spaCy lemmas - counts unique lemma forms using
the spaCy NLP module.

Each of the NLP modules (nltk, spaCy) are optional; if
one is not
installed then its respective hapax-counting method
will not be run.

Usage:

 python hapaxes.py [file]

If 'file' is given, its contents are read and used as
the text in which to
find hapaxes. If 'file' is omitted, then a test text
will be used.

Example:

Running this script with no arguments:

 python hapaxes.py

Will process this text:

 Cory Linguist, a cautious corpus linguist, in
creating a corpus of
 courtship correspondence, corrupted a crucial
link. Now, if Cory Linguist,
 a careful corpus linguist, in creating a corpus of
courtship
 correspondence, corrupted a crucial link, see that
YOU, in creating a

20

 corpus of courtship correspondence, corrupt not a
crucial link.

And produce this output:

 Count
 Wordforms 9
 Stems 8
 Lemmas 8
 spaCy 8

 -- Hapaxes --
 Wordforms: careful, cautious, corrupt, if, not,
now, see, that, you
 NLTK-stems: care, cautious, if, not, now, see,
that, you
 NLTK-lemmas: care, cautious, if, not, now, see,
that, you
 spaCy: careful, cautious, if, not, now,
see, that, you

Notice that the stems and lemmas methods do not count
"corrupt" as a hapax
because it also occurs as "corrupted". Notice also
that "Linguist" is not
counted as the text is normalized for case.

See also the Wikipedia entry on "Hapex legomenon"
(https://en.wikipedia.org/wiki/Hapax_legomenon)
"""

Imports
#

21

Import some Python 3 features to use in Python 2
from __future__ import print_function
from __future__ import unicode_literals

gives us access to command-line arguments
import sys

The Counter collection is a convenient layer on top
of
python's standard dictionary type for counting
iterables.
from collections import Counter

The standard python regular expression module:
import re

try:
 # Import NLTK if it is installed
 import nltk

 # This imports NLTK's implementation of the
Snowball
 # stemmer algorithm
 from nltk.stem.snowball import SnowballStemmer

 # NLTK's interface to the WordNet lemmatizer
 from nltk.stem.wordnet import WordNetLemmatizer
except ImportError:
 nltk = None
 print("NLTK is not installed, so we won't use it.
")

try:
 # Import spaCy if it is installed

22

 import spacy
except ImportError:
 spacy = None
 print("spaCy is not installed, so we won't use
it.")

def normalize_tokenize(string):
 """
 Takes a string, normalizes it (makes it lowercase
and
 removes punctuation), and then splits it into a
list of
 words.

 Note that everything in this function is plain
Python
 without using NLTK (although as noted below, NLTK
provides
 some more sophisticated tokenizers we could have
used).
 """
 # make lowercase
 norm = string.lower()

 # remove punctuation
 norm = re.sub(r'(?u)[^\w\s]', '', norm) # <1>

 # split into words
 tokens = norm.split()

 return tokens

def word_form_hapaxes(tokens):
 """

23

 Takes a list of tokens and returns a list of the
 wordform hapaxes (those wordforms that only appear
once)

 For wordforms this is simple enough to do in plain
 Python without an NLP package, especially using
the Counter
 type from the collections module (part of the
Python
 standard library).
 """

 counts = Counter(tokens) # <1>
 hapaxes = [word for word in counts if counts[word]
== 1] # <2>

 return hapaxes

def nltk_stem_hapaxes(tokens):
 """
 Takes a list of tokens and returns a list of the
word
 stem hapaxes.
 """
 if not nltk: # <1>
 # Only run if NLTK is loaded
 return None

 # Apply NLTK's Snowball stemmer algorithm to
tokens:
 stemmer = SnowballStemmer("english")
 stems = [stemmer.stem(token) for token in tokens]

 # Filter down to hapaxes:

24

 counts = nltk.FreqDist(stems) # <2>
 hapaxes = counts.hapaxes() # <3>
 return hapaxes

def nltk_lemma_hapaxes(tokens):
 """
 Takes a list of tokens and returns a list of the
lemma
 hapaxes.
 """
 if not nltk:
 # Only run if NLTK is loaded
 return None

 # Tag tokens with part-of-speech:
 tagged = nltk.pos_tag(tokens) # <1>

 # Convert our Treebank-style tags to WordNet-style
tags.
 tagged = [(word, pt_to_wn(tag))
 for (word, tag) in tagged] # <2>

 # Lemmatize:
 lemmer = WordNetLemmatizer()
 lemmas = [lemmer.lemmatize(token, pos)
 for (token, pos) in tagged] # <3>

 return nltk_stem_hapaxes(lemmas) # <4>

def pt_to_wn(pos):
 """
 Takes a Penn Treebank tag and converts it to an
 appropriate WordNet equivalent for lemmatization.

25

 A list of Penn Treebank tags is available at:

https://www.ling.upenn.edu/courses/Fall_2003/ling001/p
enn_treebank_pos.html
 """

 from nltk.corpus.reader.wordnet import NOUN, VERB,
ADJ, ADV

 pos = pos.lower()

 if pos.startswith('jj'):
 tag = ADJ
 elif pos == 'md':
 # Modal auxiliary verbs
 tag = VERB
 elif pos.startswith('rb'):
 tag = ADV
 elif pos.startswith('vb'):
 tag = VERB
 elif pos == 'wrb':
 # Wh-adverb (how, however, whence,
whenever...)
 tag = ADV
 else:
 # default to NOUN
 # This is not strictly correct, but it is good
 # enough for lemmatization.
 tag = NOUN

 return tag

def spacy_hapaxes(rawtext):
 """

26

 Takes plain text and returns a list of lemma
hapaxes using
 the spaCy NLP package.
 """
 if not spacy:
 # Only run if spaCy is installed
 return None

 # Load the English spaCy parser
 spacy_parse = spacy.load('en_core_web_sm')

 # Tokenize, parse, and tag text:
 doc = spacy_parse(rawtext)

 lemmas = [token.lemma_ for token in doc
 if not token.is_punct and not token
.is_space] # <1>

 # Now we can get a count of every lemma:
 counts = Counter(lemmas) # <2>

 # We are interested in lemmas which appear only
once
 hapaxes = [lemma for lemma in counts if counts
[lemma] == 1]
 return hapaxes

if __name__ == "__main__":
 """
 The code in this block is run when this file is
executed as a script (but
 not if it is imported as a module by another
Python script).
 """

27

 # If no file is provided, then use this sample
text:
 text = """Cory Linguist, a cautious corpus
linguist, in creating a
 corpus of courtship correspondence, corrupted a
crucial link. Now, if Cory
 Linguist, a careful corpus linguist, in creating a
corpus of courtship
 correspondence, corrupted a crucial link, see that
YOU, in creating a
 corpus of courtship correspondence, corrupt not a
crucial link."""

 if len(sys.argv) > 1:
 # We got at least one command-line argument.
We'll ignore all but the
 # first.
 with open(sys.argv[1], 'r') as file:
 text = file.read()
 try:
 # in Python 2 we need a unicode string
 text = unicode(text)
 except:
 # in Python 3 'unicode()' is not
defined
 # we don't have to do anything
 pass

 # tokenize the text (break into words)
 tokens = normalize_tokenize(text)

 # Get hapaxes based on wordforms, stems, and
lemmas:

28

 wfs = word_form_hapaxes(tokens)
 stems = nltk_stem_hapaxes(tokens)
 lemmas = nltk_lemma_hapaxes(tokens)
 spacy_lems = spacy_hapaxes(text)

 # Print count table and list of hapaxes:
 row_labels = ["Wordforms"]
 row_data = [wfs]

 # only add NLTK data if it is installed
 if nltk:
 row_labels.extend(["NLTK-stems", "NLTK-lemmas
"])
 row_data.extend([stems, lemmas])

 # only add spaCy data if it is installed:
 if spacy_lems:
 row_labels.append("spaCy")
 row_data.append(spacy_lems)

 # sort happaxes for display
 row_date = [row.sort() for row in row_data]

 # format and print output
 rows = zip(row_labels, row_data)
 row_fmt = "{:>14}{:^8}"
 print("\n")
 print(row_fmt.format("", "Count"))
 hapax_list = []
 for row in rows:
 print(row_fmt.format(row[0], len(row[1])))
 hapax_list += ["{:<14}{:<68}".format(row[0] +
":", ", ".join(row[1]))]

29

 print("\n-- Hapaxes --")
 for row in hapax_list:
 print(row)
 print("\n")

30

	A First Exercise in Natural Language Processing with Python: Counting Hapaxes
	A first exercise
	Natural language processing with Python
	Installation
	Optional dependency on Python modules
	Tokenization
	Counting word forms
	Stemming and Lemmatization
	Lemmatization with NLTK
	Finding hapaxes with spaCy
	Make it a script

	hapaxes.py listing

